SSI蓖麻毒素(RICIN)为具有两条肽链的高毒性的植物蛋白。它主要存在于蓖麻籽中。该毒素易损伤肝、肾等实质器官,发生出血、变性、坏死病变。并能凝集和溶解红细胞,抑制麻痹心血管和呼吸中枢,是致死的主要原因之一。
小鼠静脉注射LD50值为2.7μg/kg,腹腔注射为7~10μg/kg;对狗LD50值为0.6μg/kg;人致死量约为7mg。
蓖麻毒素的一、二级结构已清楚,由A、B两条链组成。A链比B链稍短,两链之间以一个二硫键相连接。它含有共价键结合的糖分子,糖的主要组成是甘露糖、葡萄糖和半乳糖。分子量为66,000。在0.1克分子半乳糖溶液中,毒素可在冰箱中贮存数月而不失活性,但煮沸易失去活性。
蓖麻籽
蓖麻毒素是从蓖麻籽中提取的植物糖蛋白,分子量64000。毒素由A和B两条多肽链组成,两链间由一个二硫键连接。目前,A链和B链的氨基酸序列以及二级结构已基本清楚。毒素B链上含有两个半乳糖或半乳糖残基结合位点,可和细胞表面的含半乳糖残基的受体结合,通过内陷作用进入细胞质,发挥毒性作用。蓖麻毒素A、B链上还分别含有1和2个糖支链,链末端均为甘露糖残基,可以和网状内皮细胞特别是巨噬细胞结合。后者细胞表面富含甘露糖受体,可优先摄取蓖麻毒素,这对于毒素发挥生物功能有重要的作用。
蓖麻毒素与巨噬细胞的相互作用,不仅诱导细胞免疫,而且诱导产生自由基和活性氧,引起脂质过氧化作用。1991年,Muldoon和Stohes发现蓖麻毒素可以诱导小鼠体内的脂质过氧化作用,结果导致尿液中丙二醛、甲醛、丙酮的含量增加。1992年的研究表明,各脏器中脂质过氧化强度(MDA含量),还原型谷胱甘肽的减少以及DNA单链断裂程度在毒素中毒36小时后为强烈,且肝脏的损伤为严重。结合以往的研究:谷胱甘肽的使用可以部分对抗致死剂量的毒素效应,具有潜在的化学保护作用,因此,Muldoon等认为蓖麻毒素引起的氧化作用可 以归属到蓖麻毒素的毒性机理中去。
TNF-α抗体,铁离子对蓖麻毒素诱导的脂质过氧化和氧化损伤起重要的调节作用。给小鼠注射抗TNF-α的抗体,可以明显降低尿液丙二醛,甲醛,丙酮的含量。铁离子以及去铁敏(desferrioxamine)的掺入,可分别增加和减少蓖麻毒素诱导的脂质过氧化的水平。蓖麻毒素引起体内氧化损伤的机理还待更深入的探讨。
坏死和凋亡是细胞死亡的两种方式。在引起细胞凋亡的三大类因素中,毒素,抗癌药物是其中之一。以往认为化疗药物是通过引起靶细胞发生不可逆代谢障碍而杀死肿瘤细胞,近年来认为是通过改变生理环境而诱发细胞发生PCD(programmed cell death)而达到疗效。
1989年,Leek等报道:在蓖麻毒素中毒的肠道病理研究中利用免疫组织化学和电子显微镜观察到肠道上皮细胞的胞浆中存在凋亡样的变化。1990年,Waring报道;蓖麻毒素可诱导巨噬细胞,未成熟T细胞出现DNA破碎(DNA fragmentation),而后者被认为是与凋亡有关的生化改变之一。1991年,他们报道了蓖麻毒素诱导上皮样细胞发生凋亡样的形态学改变。1996年,Fu等报道了蓖麻毒素可诱导小鼠体内甲状腺,脾脏的细胞出现凋亡现象。
SSI蓖麻毒素(RICIN)等蛋白质合成抑制剂诱导细胞凋亡的机制与它们抑制蛋白合成作用无关,亦不需要Ca2+依赖性核酸内切酶的参与,而是与其升高细胞内的三磷酸肌醇水平有关。另外,有报道:巨噬细胞的粘附可以阻止蓖麻毒素诱导的巨噬细胞凋亡现象的发生。蓖麻毒素的抗吞噬细胞作用可能直接导致DNA断裂和诱导细胞凋亡。资料表明:引起细胞坏死的有害因素在强度很大时可导致细胞坏死,但强度较小时却引起细胞发生凋亡。蓖麻毒素诱导的细胞凋亡也存在明显的剂量依赖性。总之,蓖麻毒素诱导细胞发生凋亡与传统的蓖麻毒素作为蛋白质合成抑制剂并不构成矛盾。